
ViTaMIn: Learning Contact-Rich Tasks Through
Robot-Free Visuo-Tactile Manipulation Interface
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Fig. 1: ViTaMIn overview. Our system comprises a portable data collection device that integrates visual and tactile sensing, a
multimodal representation learning framework for fusing visual and tactile information, and demonstrations of various contact-
rich manipulation tasks. This system facilitates efficient collection of manipulation data without requiring complex robot setups.
(*Backgrounds in the images are blurred.)

Abstract—Tactile information plays a crucial role for hu-
mans and robots to interact effectively with their environment,
particularly for tasks requiring the understanding of contact
properties. Solving such dexterous manipulation tasks often relies
on imitation learning from demonstration datasets, which are
typically collected via teleoperation systems and often demand
substantial time and effort. To address these challenges, we
present ViTaMIn, an embodiment-free manipulation interface
that seamlessly integrates visual and tactile sensing into a hand-
held gripper, enabling data collection without the need for
teleoperation. Our design employs a compliant Fin Ray gripper
with tactile sensing, allowing operators to perceive force feedback
during manipulation for more intuitive operation. Additionally,
we propose a multimodal representation learning strategy to
obtain pre-trained tactile representations, improving data ef-
ficiency and policy robustness. Experiments on five contact-
rich manipulation tasks demonstrate that ViTaMIn significantly
outperforms baseline methods, demonstrating its effectiveness for
complex manipulation tasks.

I. INTRODUCTION

Humans rely on both visual and tactile modalities to perform
a diverse range of manipulation tasks in daily life. For instance,
when inserting a plug into a socket or tightening a screw,
vision helps with identifying and aligning components, while

tactile signals enable precise force control during contact.
This seamless integration of vision and touch enhances human
dexterity, particularly in tasks that require contact-rich control,
handling visual occlusions, or performing in-hand manipula-
tions.

Recent progress in learning from demonstrations [18, 2,
3, 5] has shown significant potential for advancing general-
purpose robots, enabling them to efficiently acquire complex
skills from human demonstrations. Consequently, developing
systems to collect high-quality demonstration data has been
a recent key focus. Prior work have explored real-world
data collection methods, including joint-mapped devices and
exoskeletons [1, 9, 42, 8], and vision-based teleoperation
frameworks [4, 27]. Nevertheless, these techniques require
real-time teleoperation of a physical robot during data col-
lection, which constrains efficiency and flexibility. In contrast,
portable devices [32, 7, 34, 6] present a more scalable and
cost-effective alternative to collect demonstration without tele-
operation. Moreover, they can be seamlessly integrated into
various embodiments, providing a more flexible data collection
approach. However, these portable devices primarily focus on
capturing vision-only demonstration data, limiting their usage



for contact-rich and dexterous manipulation tasks where tactile
feedback plays a crucial role.

In this work, we aim to address both the challenge of
efficient data collection and the need for learning more
dexterous tasks using visuo-tactile demonstrations. To this
end, we introduce ViTaMIn, a novel and effective visuo-
tactile manipulation interface designed to capture high-quality
demonstrations with enhanced efficiency and flexibility. Unlike
conventional approaches that rely on expensive or rigid tactile
sensors, ViTaMIn leverages an omnidirectional compliant Fin
Ray gripper with customized tactile sensing, which can detect
contact from all directions as an expressive tactile signal for
robot manipulation. We integrate the tactile-aware Fin Ray
gripper with UMI [6], enhancing the collected data with
rich multimodal information and improving policy learning
performance while maintaining the core advantages of portable
devices. Additionally, our system enables operators to perceive
force feedback during manipulation, facilitating more intuitive
and seamless operation.

Pre-trained visual representations have shown improved
performance in robotic manipulation [24, 20, 38, 29, 21], ben-
efiting from large-scale visual pre-training. To fully leverage
the visuo-tactile datasets collected with ViTaMIn, we adopt a
multimodal representation learning strategy to pre-train tactile
representations, enhancing the robustness and generalizability
of our sensor-based policies. Our pre-training objective inte-
grates masked autoencoding [13] and contrastive learning for
multimodal alignment [28], where future image observations
are aligned with masked current images and tactile signals.
Through extensive experiments on five challenging contact-
rich manipulation tasks, our visuo-tactile policy, enhanced by
multimodal pre-training, exhibits superior data and training
efficiency while demonstrating strong generalization across
diverse objects and environmental conditions.

In conclusion, our contributions are:
• ViTaMIn provides a portable, scalable, and efficient

visuo-tactile data collection platform in a robot-free setup.
ViTaMIn achieves superior performance over vision-only
baselines across five manipulation tasks by leveraging
visuo-tactile demonstrations.

• ViTaMIn proposes an effective multimodal representation
learning strategy, which significantly improves the data
efficiency, robustness and generalization capabilities.

II. RELATED WORK

A. Visuo-Tactile Manipulation

The integration of visual and tactile sensing is essential
for robotic manipulation as it provides complementary sig-
nals about scene observations and physical contact. Early
works [14, 25, 22] use RGB cameras and force/torque sen-
sors to infer contact status for making decisions. However,
the information from force/torque sensors is low-dimensional
and insufficient for more dexterous manipulation tasks. More
recently, vision-based tactile sensors have gained attention
for their ability to capture high-resolution contact informa-
tion [26, 19, 12], but the rigid design of these sensors restricts

the compliance of the end effector, limiting their applicability
in complex tasks. In our work, we use a Fin-Ray-shaped
compliant and all-directional tactile sensor, which can detect
contacts from all directions, essential for safe and robust
manipulation.

The work most related to ours is Huang et al. [15], which
attached flexible resistive tactile sensors with a resolution
of 16×16 onto a Fin Ray gripper and devised a 3D visuo-
tactile representation to integrate these two modalities, thereby
enabling more efficient learning. Our work differs from theirs
in three significant aspects: (1) Our data collection device is
portable and low-cost. (2) Our vision-based tactile sensor has
a higher resolution (640×480), which is essential for precise
manipulation. (3) We pre-train effective tactile representations
to enhance the generalization capability and data efficiency of
our policy.

B. Data Collection System for Robot Manipulation

Recent advancements in learning from demonstrations [18,
2, 3, 5] have demonstrated promising results in developing
general-purpose robots, allowing them to acquire complex
skills efficiently by leveraging human demonstrations. There-
fore, efficiently collecting high-quality demonstrations has
become a key research focus. While simulation platforms can
theoretically generate unlimited demonstrations, their fidelity
remains inadequate for objects with complex physical prop-
erties [30, 16, 39, 11], limiting their applicability to real-
world tasks. On the other hand, recent research has focused on
developing efficient real-world data collection systems, such
as devices or exoskeletons with joint-mapping [1, 9, 42], ex-
oskeletons [8], or vision-based systems [4, 27]. However, these
approaches require teleoperating a physical robot during data
collection, which limits efficiency and flexibility. In contrast,
portable devices [32, 7, 34, 6] offer several advantages: they
are low-cost, flexible, and do not depend on a specific physical
robot. Additionally, they can be seamlessly integrated into
various embodiments and provide a more user-friendly expe-
rience for data collection. Unlike prior work that relies solely
on visual observations, we enhance the UMI data collection
system [6] by integrating tactile sensing. This addition enriches
the collected data with multimodal information, improving
policy learning performance while preserving the key benefits
of portable devices. Moreover, our system allows operators to
perceive force feedback during manipulation, enabling more
intuitive and seamless operation.

C. Multimodal Pre-training for Robotics

Pre-trained visual representations have shown improved
performance and generalization in robotic manipulation [24,
20, 38, 29, 21] motivated by self-supervised learning tech-
niques [13, 28]. Similar strategies have been employed in
multimodal representation learning [33, 40, 41] by integrating
visual, tactile, and proprioceptive modalities, allowing robots
to perceive object properties beyond visual appearance. For
example, Sferrazza et al. [33] introduced a masked mul-
timodal autoencoding framework that jointly learns visuo-
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Fig. 2: ViTaMIn’s hardware system overview. The handheld device integrates a GoPro camera for visual information, two
tactile sensors for tactile information, a synchronization camera for temporally aligning visual and tactile information, and a
rear compartment for storing the battery and a Raspberry Pi. During data collection, the GoPro camera can operate independently,
while the two tactile sensors and the synchronization camera connect to the Raspberry Pi in the backbox via USB cables. The
Raspberry Pi is powered by the battery inside the backbox, which also houses the data collection control button on its left side.
The device is designed for offline operation and is fully functional in the wild. The total weight of the gripper is approximately
1960g. Left: Side view of the ViTaMIn system. Right: Top view of the ViTaMIn system with the backbox cover removed.

tactile representations with reinforcement learning, demon-
strating improved data efficiency across diverse manipulation
tasks. Similarly, Xu et al. [40] utilized vector-quantized tactile
features to improve the performance for robot manipulation
and pose estimation.

Aligning heterogeneous sensory modalities is a key chal-
lenge in multimodal learning, as different sensors have vary-
ing data structures, sampling rates, and noise characteristics
[23, 35]. One promising approach to address this challenge is
contrastive learning, which maps sensory inputs to a shared
latent space, allowing effective cross-modal alignment. In-
spired by CLIP [28], researchers have developed contrastive
learning techniques that align tactile and visual representations
for manipulation tasks [36, 17]. Simeonov et al. [36] leveraged
contrastive loss functions to align robot proprioception with
vision, improving generalization to unseen tasks. Similarly,
Lee et al. [17] demonstrated how self-supervised contrastive
learning can effectively align vision and touch for robot grasp-
ing. Our work extends these efforts by introducing masked
contrastive pre-training, where the tactile encoder learns to
reconstruct future occluded visual information, further enhanc-
ing multimodal understanding.

III. VISUO-TACTILE MANIPULATION INTERFACE

A. System Overview

We design a handheld gripper to collect visuo-tactile demon-
strations without requiring teleoperation on physical robots.
Our gripper design is illustrated in Figure 2. The gripper
consists of an RGB fisheye wrist camera (GoPro 10) for
image observation, two Fin Ray grippers equipped with tactile
sensors, a synchronization camera for observation temporal
alignment, and a Raspberry Pi 5 with a battery for data
recording. The total weight of the gripper is approximately
1960g.

Image Observation To capture comprehensive visual infor-
mation, we employ a GoPro 10 camera with a 155◦ field-of-
view (FoV) fisheye lens. The camera operates at 60 FPS with
a resolution of 2704×2028 pixels and is mounted at the end-
effector of our ViTaMIn to ensure consistent visual coverage of
the manipulation workspace during demonstration collection
and policy deployment.

Tactile Observation In UMI [6], two TPU-printed Fin
Ray grippers are used to provide compliance and enhance
grasping stability. However, these grippers lack tactile sensing
capabilities. In our ViTaMIn, we employ an existing compliant
Fin Ray gripper with omnidirectional tactile sensing ability.
Figure 3 shows the structure of the gripper. A camera is fixed
at the base of the finger with white LEDs for illumination. The
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Fig. 3: Exploded view of the tactile sensor structure. The Fin
Ray finger is monolithically cast using transparent elastomers,
with a semi-transparent layer on the contact surface of the
gripper. The finger is then painted black to occlude the
environmental illumination.

Fin Ray finger is monolithically cast using transparent elas-
tomers, with a semi-transparent layer on the contact surface
of the gripper. The finger is then painted black to occlude the
environmental illumination. During manipulation, the camera
captures both the global deformation of the entire finger and
the local deformation of the contact surface as a single image.
The tactile sensing system operates at 30 FPS with a resolution
of 640×480 pixels.

Other Observations To enhance the robustness and ac-
curacy of SLAM, we utilize the IMU data provided by
the GoPro, which is synchronized with the visual observa-
tions. Gripper width is also critical for precise manipulation.
Following UMI [6], we attach two ArUco markers to the
gripper’s fingers and compute the gripper width from the visual
observations.

B. Sensor Synchronization

Since the GoPro and the two tactile sensors operate in-
dependently, their observations must be synchronized. To
achieve this, we use an additional low-cost camera for time
alignment. This camera is connected to the Raspberry Pi
and is naturally synchronized with the tactile sensors. Before
collecting manipulation data, both the synchronization camera
and the GoPro simultaneously capture a sequence of ArUco
markers displayed on a computer screen. The ArUco IDs
are detected in both video streams, and when an identical
ID appears in both, the corresponding timestamps are used
for synchronization. Since the framerates of the GoPro and
the synchronization camera are 60Hz and 30Hz respectively,
the temporal alignment error is below 1/60 + 1/30 = 0.05
seconds, which is sufficient for our tasks. Once the two videos
are synchronized, they are cropped by the starting and ending
signals triggered by the control button.

C. Data Collection and Filtering

With this design, we adopt a data collection pipeline similar
to the one employed in UMI. Similar to UMI, our approach
utilizes Simultaneous Localization and Mapping (SLAM) to

compute the end-effector poses and uses the delta poses as
actions. While SLAM may fail in low-texture environments,
it achieves a success rate of approximately 80% in our tasks,
allowing the majority of collected data to be used for imitation
learning. For details on the number of successful trajectories
included, please refer to Appendix E.
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Fig. 4: The illustration of the multimodal representation pre-
training approach. The vision encoders are frozen. The tactile
encoder is shared for the two tactile images, is initialized from
a CLIP ViT-B/16, and is trained to capture complementary
information in the tactile image, enabling it to predict the
missing content for the future image.

IV. VISUO-TACTILE POLICY LEARNING

A. Visuo-Tactile Representation Learning

UMI leverages pre-trained CLIP [28] models to extract
image representations. However, ViTaMIn also incorporates
two additional tactile images as inputs, which significantly
differ from the natural images that CLIP models are originally
trained on. As a result, directly applying CLIP models may
lead to suboptimal performance due to a mismatch in observa-
tion distribution. Meanwhile, ViTaMIn enables the collection



of a large dataset, which can be used to pre-train a more
effective tactile encoder without relying on the success of
SLAM. In this stage, we gather all the collected action-free
datasets for the 5 tasks before labeling them with actions, and
pre-train an effective tactile encoder that can capture important
contact information.

Taking the tactile image in Figure 4 as an example, we want
the encoder to capture the essential contact properties, such as
the object’s in-hand pose and gripper’s deformation. These sig-
nals are complementary information from pixel observations,
and are crucial for making future decisions.

To achieve this, we employ a multimodal contrastive learn-
ing approach as illustrated in Figure 4. Given the current
masked image ĨkV and current full tactile observation IkT of
step k, we want the combination of ĨkV and IkT align with the
future full image observation Ik+1

V in the CLIP embedding
space. The intuition behind this is to make the tactile encoder
focus on the contact information to predict future images based
on the current corrupted image.

To ensure stable training, we freeze the image CLIP encoder
ϕV (·) but only fine-tune the tactile encoder ϕT (·). We first
obtain the tactile embedding Tk from ϕT (I

k
T ), and Vk from

ϕV (Ĩ
k
V ). These embeddings are then concatenated and passed

through a fully connected projection layer, mapping them back
to the original 512-dimensional CLIP embedding space as a
fused feature Fk. Finally, we train the tactile encoder using
the standard CLIP loss on Fk and Vk+1:

LCLIP =
1

2
(Lf-v + Lv-f) (1)

where

Lv-f = − 1

N

N∑
i=1

log
exp(cos(Vi+1, Fi)/τ)∑N
j=1 exp(cos(Vi+1, Fj)/τ)

(2)

Lf-v = − 1

N

N∑
i=1

log
exp(cos(Fi, Vi+1)/τ)∑N
j=1 exp(cos(Fi, Vj+1)/τ)

(3)

here τ is a learnable temperature parameter.
Different from George et al. [10], where they directly apply

the CLIP loss on the time-aligned visuo-tactile images IkV ,
we instead fuse the tactile observation with a masked current
image to predict the future image. We made this choice for
two main reasons. First, in George et al. [10], the tactile
representation is conditioned on proprioceptive states, which
are unavailable in our dataset before the success of SLAM.
Second, since different tasks may have varying images but
similar tactile observations, fusing a masked current image
helps the network learn a more expressive tactile representa-
tion with less confusion. Without sufficient masking, however,
the alignment becomes trivial.

B. Behaviour Cloning

After pre-training, we train a Diffusion Policy [5] on the
SLAM-filtered data for each individual task. We use the pre-
trained tactile encoders and the original CLIP model to extract

tactile and visual representations, respectively. Following Chi
et al. [5], we use the delta end-effector pose as the action space,
and use a Convolutional U-Net [31] as the noise prediction
network and apply DDIM [37] to accelerate the inference.
For additional training details, please refer to Appendix C.

V. EXPERIMENTS

A. Experimental Setup

PGI Gripper

ROKAE 
xMate3 Pro

Tactile Sensor

GoPro Camera

Fig. 5: Experiment setup for policy deployment. The sensing
system, including the GoPro camera and the two tactile sen-
sors, is attached to the end effector, in the same configuration
as the data collection.

Figure 5 shows the policy deployment setup. We use a
Rokae xMate ER3Pro robot arm with a PGI-140-80-W-S
parallel gripper fixed at its end. The sensing system, including
the GoPro camera and the two tactile sensors, is attached to the
end effector, in the same configuration as the data collection.

The system is implemented using ROS Noetic on Ubuntu
20.04. The control loop operates at 10Hz, with separate threads
handling visual processing, tactile sensing, and robot control.
The system architecture is designed to minimize latency while
maintaining reliable real-time performance.

Similar to UMI [6], our system compensates for various
sources of latency in the perception-action loop through pre-
dictive buffering and timestamp-based synchronization be-
tween visual and tactile feedback streams. The policy gener-
ates 16 consecutive trajectories at each inference step, with
approximately 10 trajectories being executed based on our
temporal compensation strategy. For additional deployment
details, please refer to Appendix B.

B. Manipulation Tasks

As shown in Figure 6, we design a diverse set of contact-rich
manipulation tasks to evaluate the effectiveness of ViTaMIn.
These tasks are specifically crafted to demonstrate the fol-
lowing key capabilities: (1) Robust pick-and-place of diverse
objects, including fragile and small objects; (2) Dexterous
manipulation, such as in-hand reorientation; (3) Handling of
soft objects that require adaptive control; (4) Task success
determination, allowing the robot to repeat attempts until
successful completion.

Single-Arm Tasks: We first evaluate our method on 4
single-arm manipulation tasks:

• Orange Placement: The robot is required to pick up a
fragile orange from a random initial position and place it
onto a randomly placed plate.



Task 2. Sponge Insertion

Task 3. Test Tube Reorientation

Task 4. Scissor Hanging

Task 5. Knife Pulling (Bimanual)

Stage Ⅰ Stage Ⅱ

Task 1. Orange Placement

Stage Ⅰ Stage Ⅱ

Init Grasp Orange Place on Plate Init Grasp Sponge Place on Cup Press into Cup Final

FinalReorientationRaiseGrasp Test TubeInit

Init Grasp Scissor Fail to Hang Retry Final

FinalDraw KnifePlace Knife FlatGrasp KnifeInit

Fig. 6: Task illustration. We test ViTaMIn on 5 contact-rich manipulation tasks. Orange Placement tests the ability of pick-
and-place of fragile objects. Test Tube Reorientation tests the ability of in-hand manipulation guided by tactile sensing.
Scissor Hanging tests the ability of success determination through multimodal feedback. Sponge Insertion tests the ability
of precise manipulation for deformable objects. Knife Pulling tests the ability of bimanual coordination.

• Test Tube Reorientation: The robot is required to grasp
a transparent test tube from a shelf and adjust the test
tube’s in-hand pose through extrinsic dexterity based on
tactile feedback.

• Scissor Hanging: The robot is required to grasp a pair
of scissors and hang them on a hook. The robot should
be able to adjust the pose and keep attempting until it
succeeds.

• Sponge Insertion: The robot is required to first grasp a
sponge place it onto a cup with a smaller diameter than
the sponge, and then push it to deform so that it can fit
into the cup.

Dual-Arm Task: We further evaluate the effectiveness of
ViTaMIn on one dual-arm manipulation task, which is Knife
Pulling: Two robots are required to coordinate with each other

to accomplish this task. The left arm first grasps a knife from
a cup, orients it horizontally, and holds it. Then, the right
arm reaches for the knife’s handle and pulls it out. This task
requires both visual information to localize the knife’s pose
and tactile feedback to grasp the thin object and perform the
pulling motion in the correct direction.

We compare our approach against the following methods:

• Vision: For this baseline, the policy only takes visual ob-
servation from the GoPro camera. The image is encoded
with the pre-trained CLIP model, which is identical to
the original UMI [6] paper.

• Ours w/o Pre-training: This baseline integrates visual and
tactile observations through simple concatenation after
separate ViT-B/16 encoders, which are initialized from
the original CLIP model, and fine-tuned during behavior
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Fig. 8: Ablation study on the effect of pre-training on training efficiency. Policies with pre-training are able to learn to complete
the first-stage task at a remarkably early stage of training (within 10 epochs). Additionally, when the policy network is pre-
trained, the overall success rates increase more rapidly.

TABLE I: Comparisons on 5 tasks with vision-only policy
(original UMI) and ours w/o pre-training to study the effec-
tiveness of tactile signals and multimodal representation learn-
ing.The results demonstrate that our approach significantly
improves performance across both single-arm and dual-arm
tasks.

Task Vision Ours w/o Pre-training Ours

Single-Arm Tasks

Orange placement 0.85 0.9 1
Test Tube Reorientation 0.4 0.7 0.9
Scissor Hanging 0 0.45 0.7
Sponge Insertion 0.1 0.4 0.45

Dual-Arm Task

Knife Pulling 0.6 0.8 0.9

cloning with reduced learning rates.

The results are presented in Table I. For each task, we conduct
20 trials with randomized initial conditions and report the

average performance. The vision-only policy performs the
worst across all five tasks, particularly in contact-rich tasks
like test tube reorientation and scissor hanging, where tactile
feedback is crucial for success. Across all tasks, pre-training
enhances the performance, highlighting the importance of
learning effective tactile representations.

C. Ablation Studies

In this section, we evaluate the influence of pre-training on
data efficiency and training efficiency.

a) Data Efficiency: We evaluate the performance of poli-
cies trained on different amounts (25%, 50%, and 100%) of
demonstration data for two tasks. All the models are evaluated
in 20 real-world trials with slightly different initial conditions.
For a more in-depth analysis, we calculate the success rates
of each stage separately, where the stages are illustrated in
Figure 6. Figure 7 presents the results. For both methods, the
performance of the policy improves with an increase in the
quantity of data. With the pre-trained tactile representations,
our method can achieve consistently higher success rates on all



TABLE II: Generalization under different test conditions. The
results demonstrate that the tactile information and the mul-
timodal pre-training significantly improve the generalization
capability to novel objects and different lighting conditions.

Task Method Original Novel
Objects

Different
Lighting

Orange
Placement

Vision 0.85 0.7 0.55
Ours w/o Pre-training 0.9 0.8 0.6
Ours 1.0 1.0 0.85

Scissor
Hanging

Vision 0.0 0.0 0.0
Ours w/o Pre-training 0.45 0.4 0.4
Ours 0.7 0.7 0.5

the tasks across different amounts of data, and can even master
the task with limited data (25%) for test tube reorientation.

b) Training Efficiency: We further evaluate the policies
trained with different numbers of epochs to understand its
training efficiency. All the models are evaluated in 20 real-
world trials with slightly different initial conditions. The
results are illustrated in Figure 8. Similar to the data effi-
ciency performance, we also observe consistent performance
improvements on all the tasks. Moreover, the policies with
pre-trained tactile representation can learn to complete the
first-stage task at a remarkably early training stage (within
10 epochs). The total success rates also increase faster with
pre-training.

D. Generalization Capability

To further investigate the impact of tactile inputs and
effective representation learning, we evaluate our policy’s
generalization to unseen objects and environments, comparing
it against its vision-only and pre-training-free counterparts. As
shown in Figure 9, beyond the training orange and scissor,
we introduce 6 unseen small objects and 3 unseen scissors to
assess object generalization. Additionally, we modify lighting
conditions by increasing brightness and introducing colored
disco ball lighting. Table II presents results on the tasks
of orange placement and scissor hanging. We measure the
policy’s success rate over 20 trials per task and report the
average performance.

According to Table II, our method with pre-training achieves
consistent better performance across various generalization
settings. Moreover, the effect of representation learning also
noticeably improves the generalization capability for both
tasks.

E. Significance of High-Resolution Tactile Sensing

One key advantage of vision-based tactile sensing over other
tactile sensing mechanisms is its high resolution, which is
essential for precise manipulation tasks. In this section, we
evaluate the significance of high-resolution tactile sensing in
two tasks that heavily rely on detailed tactile feedback: Test
Tube Reorientation and Scissor Hanging. To demonstrate the
importance of high-resolution tactile sensing, we downsample
the tactile image to a resolution of 16×16, which is the same

Orange
Placement

Scissor
Hanging

Different LightingNovel Objects

Fig. 9: Showcase of novel objects and different lighting in
the generalization task. The left column represents the novel
objects. The right three columns illustrate different lighting
conditions: colored flashlight illumination, high-power lighting
illumination, and normal lighting conditions.

TABLE III: Comparison of different tactile resolution. The
results indicate that higher resolution tactile sensing signif-
icantly improves the performance for tasks that require fine
tactile feedback.

Task Vision Vision+
Low-Res Tactile

Vision+
High-Res Tactile

Test Tube
Reorientation 0.4 0.6 0.7

Scissor Hanging 0 0.2 0.45

resolution as the resistive tactile sensors used in Huang et al.
[15]. We measure the policy’s success rate over 20 trials per
task and report the average performance. Table III presents
the results. The high-resolution tactile sensing significantly
outperforms the low-resolution counterpart, demonstrating the
importance of high-resolution tactile sensing.

VI. LIMITATION AND CONCLUSION

This paper primarily focuses on fixed-base single-arm and
dual-arm tasks with parallel-jaw grippers. While this setup is
suitable for a wide range of manipulation tasks, it inherently
limits the ability to explore more dexterous and contact-rich
interactions. Future work could extend our approach to dex-
terous hands, enabling richer and more versatile manipulation
skills that better approximate human-level dexterity. Moreover,
long-horizon multi-stage mobile manipulation tasks are likely
to gain advantages from multimodal sensing.

In this paper, we present ViTaMIn, a portable visuo-tactile
manipulation interface designed for efficiently collecting high-
quality demonstrations by capturing both visual and tactile
signals. Furthermore, ViTaMIn introduces an effective pre-
training strategy that leverages all the collected action-free
data to learn a robust and generalizable tactile representa-
tion through multimodal contrastive learning. Our approach
significantly outperforms vision-only policies across five real-
world contact-rich manipulation tasks and demonstrates im-
proved data efficiency, robustness, and generalizability with
pre-trained visuo-tactile representations.
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APPENDIX

A. COMPARISON OF GRIPPERS

Figure 10 compares the TPU-printed Fin Ray gripper em-
ployed in UMI [6] with the elastomer-casted Fin Ray gripper
used in our work. Our gripper is softer and can offer greater
compliance and caging capability. Since the TPU-printed fin-
ger is more rigid and lacks tactile feedback, it may damage
fragile objects such as strawberries during grasping. Another
advantage of our tactile sensors is their ability to deform and
sense contact in all directions. Thus, when in contact with the
table, the sensor can deform, detect the contact, and respond
appropriately. This is particularly crucial for grasping small
objects on the table when the SLAM accuracy and the trained
policy are not precise enough.

Fig. 10: Comparison of the TPU-printed Fin Ray gripper
employed in UMI [6] with the elastomer-casted Fin Ray
gripper used in our work. The strawberry is damaged by the
TPU gripper during grasping.

B. IMPLEMENTATION DETAILS

A. Hardware Setup

Our system consists of a Rokae xMate ER3PRO robotic arm
equipped with a PGI-140-80-W-S parallel gripper. The 7-DOF
robotic arm provides flexible manipulation capabilities, while
the gripper features an 8cm stroke range from fully open to
closed position. For visual perception, we employ a GoPro 10
camera with a 155◦ field-of-view fisheye lens, operating at 60
FPS with a resolution of 2704×2028 pixels. The tactile sensing
system consists of two Fin Ray grippers, each integrated with
a camera operating at 30 FPS with a resolution of 640×480.

As illustrated in Figure. 3 of the main text, our gripper
design incorporates several key components. The Fin Ray
finger is fabricated through a single-piece casting process
using transparent silicone. The finger base and sensor shell
are 3D printed using photocurable resin, serving as mounting
points for the gripper and camera respectively. An acrylic
board provides both light transmission and structural support.
The LED board illuminates the blackened gripper surface,
enabling the camera to capture internal deformations. An
isolation ring prevents direct light exposure from the LED to
the camera.

B. Software Setup

Our system is implemented using ROS Noetic on Ubuntu
20.04. The control loop operates at 10Hz, with separate threads
handling visual processing, tactile sensing, and robot control.
The system architecture is designed to minimize latency while
maintaining reliable real-time performance.

Our system is deployed on a PC with an NVIDIA RTX
2080Ti GPU. The tactile sensors are directly connected to the
workstation via USB cables, while the GoPro camera feed
is captured through an Elgato HD60 X capture card with an
external media module.

C. Latency Compensation

Similar to UMI [6], our system compensates for various
sources of latency in the perception-action loop through pre-
dictive buffering and timestamp-based synchronization be-
tween visual and tactile feedback streams. The policy gener-
ates 16 consecutive trajectories at each inference step, with
approximately 10 trajectories being executed based on our
temporal compensation strategy.

C. TRAINING DETAILS

Our policy learning implementation and training are largely
based on Diffusion Policy [5] and UMI [6]. For all the experi-
ments of ours and baselines, we use consistent policy training
hyper-parameters, as shown in Table V. Table IV shows the
multimodal representation learning hyperparameters.

For all the experiments, we evaluate the checkpoints at 60
training epochs after convergence at default.

TABLE IV: Hyper-parameters for representation learning.

Parameter Value

Observation resolution 224× 224
Mask ratio [0.5, 0.75]
Optimizer AdamW
Optimizer momentum β1 = 0.95, β2 = 0.999
Learning rate 1e−4
Learning rate schedule Cosine decay
Batch size 256

TABLE V: Training hyper-parameters for policy learning.

Parameter Value

Observation Settings
Image observation horizon 2
Proprioception observation horizon 2
Action horizon 16
Observation resolution 224× 224

Optimization Parameters
Optimizer AdamW
Optimizer momentum β1 = 0.95, β2 = 0.999
Learning rate (action diffusion) 3e−4
Learning rate (visual encoder) 3e−5
Learning rate schedule Cosine decay
Batch size 64
Train diffusion steps 50
Inference denoising steps 16



D. TASK DESCRIPTION AND FAILURE ANALYSIS

We evaluate our system on four single-arm tasks and one
dual-arm task.For each task, we evaluate the system’s perfor-
mance across 20 different initial configurations, varying both
the robot’s initial end-effector position and the target object’s
placement.

1) Orange placement Task: The orange and plate are placed
at random initial positions within a 50cm×50cm workspace
area on the table. The task requires the gripper to securely
grasp the orange and place it on the plate. Success is deter-
mined by stable placement of the orange on the target plate.

Failure Modes:

• Policy trajectory generation failures despite clear visual
detection

• Gripper collision with the table surface during grasping
• Unsuccessful placement after successful grasping

Vision baselines particularly struggle with table collision
avoidance.

2) Test tube reorientation: The test tube is randomly placed
in one of the holes of a tube rack, with the rack position
varying within a 20cm×20cm area. The robot needs to grasp
the tube and reorient it to a vertical position. The task is
considered successful when the tube’s orientation error is less
than 10◦ from vertical.

Failure Modes:

• Collisions with the tube rack during grasping
• Excessive lifting without proper table-relative positioning
• Incorrect reorientation of the tube

Vision approaches primarily fail in orientation assessment due
to lack of tactile feedback.

3) Scissor hanging: A pair of scissors is placed on a rack
within a 20cm×20cm workspace area. The robot needs to pick
it up and hang it on a hook mounted on a vertical surface, with
approximately 1.5cm clearance between components. Success
is defined by stable hanging and successful gripper release
within five retry attempts.

Failure Modes:

• Unsuccessful scissor detection and localization
• Failed hanging attempts after successful grasping
• Failure to release after successful hanging

Vision methods struggle with release timing due to lack of
tactile feedback for task completion detection.

4) Sponge insertion: The sponge (15cm×8cm×2cm) and
cup (4.5cm inner radius) are randomly placed within a
30cm×30cm area on the table. Success is determined by the
sponge making contact with the bottom of the cup.

Failure Modes:

• Misaligned grasping of the sponge
• Unsuccessful placement of the sponge on the target

surface
• Deformation control during insertion

Vision approaches have difficulty managing the deformable
nature of the sponge.

5) Knife pulling: This dual-arm task requires coordinated
motion between the two arms. The knife is placed in a knife
holder, with the holder’s random range being 15cm×15cm. The
left arm grasps and orients the knife to a horizontal position,
while the right arm grasps the handle and performs a pulling
motion. The task is considered successful once the knife has
been fully pulled out.

Failure Modes:
• Inter-arm collisions due to the knife’s small form factor
• Imprecise positioning of the right arm
• Loss of grasp during coordinated motion

Vision methods particularly struggles with maintaining stable
grasps during the coordinated pulling motion.

Figure 11 shows some representative failure cases.

E. DEMONSTRATION DATA STATISTICS

TABLE VI: Data Collection Statistics for Different Tasks

Task Raw Data Valid Data∗ Avg. Length

Orange Placement 87 73 435
Test Tube Reorientation 150 125 619
Sponge Insertion 160 138 605
Scissor Hanging 172 137 642

Knife Pulling (Left) 188 131 403
Knife Pulling (Right) 180 134 254
∗Valid data refers to demonstrations with successful SLAM tracking

Table VI shows the statistics of the demonstration data.
We collecte demonstrations for both single-arm and dual-arm
manipulation tasks. For single-arm tasks, we gather between
87 and 172 raw demonstrations per task according to the task
difficulty, with successful SLAM tracking achieved in approx-
imately 80% of the trajectories. The dual-arm knife pulling
task requires coordinated motion between both arms, with
similar data collection volumes but slightly different average
demonstration lengths for left and right arm movements.



(a) (b) (c) (d)

Fig. 11: Representative failure modes in Sponge Insertion and Scissor Hanging. (a) The gripper knocks over the cup. (b) The
sponge is not successfully placed on the cup. (c) The gripper fails to tightly grasp the scissor, causing it to fall. (d) The scissor
is still not successfully hung after multiple retries.
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