Fangchen Liu


I am a final-year Ph.D. at UC Berkeley advised by Prof. Pieter Abbeel. Prior to that, I obtained my M.S. from UC San Diego working with Prof. Hao Su, and B.S. from Peking University. I work on learning-based methods for general-purpose robots.

Email | Google Scholar | GitHub | CV | Twitter

Research

* indicates equal contribution
ViTaMIn: Learning Contact-Rich Tasks Through Portable Visuotactile Manipulation Interface
Fangchen Liu*, Chuanyu Li*, Yihua Qin, Ankit Shaw, Jing Xu, Pieter Abbeel, Rui Chen
Preprint
OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Huang Huang*, Fangchen Liu*, Letian Fu*, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken Goldberg, Pieter Abbeel
Preprint
ExBody2: Advanced Expressive Humanoid Whole-Body Control
Mazeyu Ji*, Xuanbin Peng*, Fangchen Liu, Jialong Li, Ge Yang, Xuxin Cheng, Xiaolong Wang
Preprint
Video2Policy: Scaling up Manipulation Tasks in Simulation through Internet Videos
Weirui Ye, Fangchen Liu, Zheng Ding, Yang Gao, Oleh Rybkin, Pieter Abbeel
Preprint
In-context Imitation Learning via Next-token Prediction
Letian Fu*, Huang Huang*, Gaurav Datta*, Lawrence Yunliang Chen, William Chung-Ho Panitch, Fangchen Liu, Hui Li, Ken Goldberg
ICRA 2025
Body transformer: Leveraging Robot Embodiment for Policy Learning
Carmelo Sferrazza, Dun-Ming Huang, Fangchen Liu, Jongmin Lee, Pieter Abbeel
CoRL 2024
MOKA: Open-Vocabulary Robotic Manipulation through Mark-based Visual Prompting
Fangchen Liu*, Kuan Fang*, Pieter Abbeel, Sergey Levine
RSS 2024
Chain-of-Thought Predictive Control
Zhiwei Jia, Fangchen Liu, Vineet Thumuiluri, Linghao Chen, Zhiao Huang, Hao Su
ICML 2024
FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning
Jianlan Luo*, Charles Xu*, Fangchen Liu, Liam Tan, Zipeng Lin, Jeffrey Wu, Pieter Abbeel, Sergey Levine
IJRR 2024
SpawnNet: Learning Generalizable Visuomotor Skills from Pre-trained Networks
Xingyu Lin, John So, Sashwat Mahalingam, Fangchen Liu, Pieter Abbeel
ICRA 2024
Open X-Embodiment: Robotic Learning Datasets and RT-X Models
Open X-Embodiment Collaboration
ICRA 2024
The Wisdom of Hindsight Makes Language Models Better Instruction Followers
Tianjun Zhang*, Fangchen Liu*, Justin Wong, Pieter Abbeel, Joseph E. Gonzalez.
ICML 2023
Masked Autoencoding for Scalable and Generalizable Decision Making
Fangchen Liu*, Hao Liu*, Aditya Grover, Pieter Abbeel.
NeurIPS 2022
Towards More Generalizable One-shot Visual Imitation Learning
Fangchen Liu*, Zhao Mandi*, Kimin Lee, Pieter Abbeel.
ICRA 2022

Masked World Models for Visual Control
Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, Pieter Abbeel.
CoRL 2022
State Alignment-based Imitation Learning
Fangchen Liu, Zhan Ling, Tongzhou Mu, Hao Su
ICLR 2020
Mapping State Space using Landmarks for Universal Goal Reaching
Zhiao Huang*, Fangchen Liu*, Hao Su
NeurIPS 2019
SAPIEN: a SimulAted Part-based Interactive ENvironment
Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, Li Yi, He Wang, Angel Chang, Leonidas Guibas, Hao Su.
CVPR 2020 (oral)
BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning.
Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vash Madhavan, Trevor Darrell
CVPR 2020 (oral)

Education

University of California, Berkeley

Aug. 2020 - Present

Ph.D. in Computer Science

University of California, San Diego

Sep. 2018 - Mar. 2020

M.S. in Computer Science

Peking University

Sep. 2014 - Jul. 2018

B.S. in Computer Science (Summa Cum Laude)

Teaching

CS 188: Introduction to Artificial Intelligence Fall 2024, UC Berkeley
CS 203B: Convex Optimization Winter 2020, UC San Diego
CS 152A: Introduction to Computer Vision Fall 2019, UC San Diego

Service

Conference reviewer: NeurIPS, ICML, ICLR, CVPR, ICCV, ECCV, RSS, CoRL, IROS, ICRA, L4DC
Journel reviewer: RA-L, IJRR, TMLR, JMLR