Fangchen Liu


I am a fourth-year Ph.D. at UC Berkeley advised by Prof. Pieter Abbeel. Prior to that, I obtained my M.S. from UC San Diego working with Prof. Hao Su, and B.S. from Peking University. I'm generally interested in machine learning and robotics.

CV | Google Scholar | GitHub | Twitter

fangchen_liu [at] berkeley [dot] edu

Publications

* indicates equal contribution
MOKA: Open-Vocabulary Robotic Manipulation through Mark-based Visual Prompting
Fangchen Liu*, Kuan Fang*, Pieter Abbeel, Sergey Levine
RSS 2024
Chain-of-Thought Predictive Control
Zhiwei Jia, Fangchen Liu, Vineet Thumuiluri, Linghao Chen, Zhiao Huang, Hao Su
ICML 2024
FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning
Jianlan Luo*, Charles Xu*, Fangchen Liu, Liam Tan, Zipeng Lin, Jeffrey Wu, Pieter Abbeel, Sergey Levine
IJRR 2024
SpawnNet: Learning Generalizable Visuomotor Skills from Pre-trained Networks
Xingyu Lin, John So, Sashwat Mahalingam, Fangchen Liu, Pieter Abbeel
ICRA 2024
The Wisdom of Hindsight Makes Language Models Better Instruction Followers
Tianjun Zhang*, Fangchen Liu*, Justin Wong, Pieter Abbeel, Joseph E. Gonzalez.
ICML 2023
Masked Autoencoding for Scalable and Generalizable Decision Making
Fangchen Liu*, Hao Liu*, Aditya Grover, Pieter Abbeel.
NeurIPS 2022
Towards More Generalizable One-shot Visual Imitation Learning
Zhao Mandi*, Fangchen Liu*, Kimin Lee, Pieter Abbeel.
ICRA 2022
Masked World Models for Visual Control
Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, Pieter Abbeel.
CoRL 2022
State Alignment-based Imitation Learning
Fangchen Liu, Zhan Ling, Tongzhou Mu, Hao Su
ICLR 2020

Mapping State Space using Landmarks for Universal Goal Reaching
Zhiao Huang*, Fangchen Liu*, Hao Su
NeurIPS 2019

SAPIEN: a SimulAted Part-based Interactive ENvironment
Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, Li Yi, He Wang, Angel Chang, Leonidas Guibas, Hao Su.
CVPR 2020 (oral)
BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning.
Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vash Madhavan, Trevor Darrell
CVPR 2020 (oral)

Education

University of California, Berkeley

Aug. 2020 - Present

Ph.D. in Computer Science

University of California, San Diego

Sep. 2018 - Mar. 2020

M.S. in Computer Science

Peking University

Sep. 2014 - Jul. 2018

B.S. in Computer Science (Summa Cum Laude)

Experience

Google Research Student Researcher May. 2023 - Aug. 2023
NVIDIA Research Research Intern Jun. 2022 - Jan. 2023
Facebook AI Research Research Intern Jun. 2020 - Sep. 2020
Microsoft Research Asia Research Intern Sep. 2017 - Mar. 2018
SenseTime AI Research Intern Sep. 2016 - Apr. 2017